
REP NOTES FOR JACOB AND MATHILDE

Let k be an algebraically closed field of characteristic zero, and G a finite
group. Last time we showed that k[G] is a product of matrix algebras, and
Daniel tried to give a “pure thought” proof that

k[G] ≃
!

i

ρi ⊠ ρ∨i

as a ring with G×G-action, which ended up being a bit confusing; here the
sum is over the irreps ofG. (From the proof of the classification of semisimple
algebras, we know this as a ring with left G-action, but we haven’t pinned
down the right G-action.) We’ll start by proving this directly.
Goal. Write k[G] = ⊕ρi⊗Vi, where Vi = HomG(ρi, k[G]). We show that, on
the isotypic block Vi corresponding to an irreducible ρi, the right G-action
induces a representation isomorphic to V ∗. Recall:

• The left G-action on Vi is trivial.
• The right G-action on ρi⊗Vi commutes with the left G-action, so it
factors through

ρ : G −→ AutG
"
Vi)

• We wish to identify this dimV -dimensional representation of G with
the dual representation ρ∨.

Matrix coefficients of V . Let V be an irreducible k[G]-module of dimen-
sion n = dimV . Choose a basis {v1, . . . , vn} of V and the corresponding
dual basis {v∗1, . . . , v∗n} ⊂ V ∗. For each pair (i, j) with 1 ≤ i, j ≤ n, define
the matrix-coefficient function

φi,j : G −→ k, by φi,j(g) = v∗i
"
g · vj

#
.

These functions belong to the group algebra k[G], and we claim the sub-
space spanned by all {φi,j} for fixed V is precisely the isotypic piece of k[G]
corresponding to V . Equivalently, this is the sum of all copies of V in the
left-regular representation.
Behavior under left and right actions.

• Left action. For g′ ∈ G,

(g′ · φi,j)(g) = φi,j

"
g′−1g

#
= v∗i

"
g′−1g · vj

#
.

Unwinding this shows exactly how φi,j transforms under the same
representation V (up to the usual conventions on inverses). Con-
cretely, one can check that this coincides with a direct sum of copies
of V .
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• Right action. For h ∈ G,

(φi,j · h)(g) = φi,j(g h) = v∗i
"
(g h) · vj

#
.

More explicitly, if h · vj =
$

ℓ aℓj(h) vℓ, then

(φi,j · h)(g) = v∗i

%
g
"&

ℓ

aℓj(h) vℓ
#'

=
&

ℓ

aℓj(h) v
∗
i

"
g · vℓ

#
.

In terms of matrix indices, this precisely corresponds to taking the
inverse-transpose (i.e. the dual) of the action by G on V .

Conclusion: the right action is via V ∗. We’ve shown that the matrix
coefficients lie in V ⊗V ∗ as a G×G-module; as this is irreducible as a G×G-
module they must span the V -isotypic component of k[G] by a dimension
count.

This completes the identification

V ⊗HomG(V, k[G]) ∼= V ⊗ V ∗ as a (G×G)-module.

We will now work towards proving the following basic fact about repre-
sentations of finite groups, which is one of the last remaining loose ends
before we dive into representations of specific families of finite groups.

Theorem. Let G be a finite group and k an algebraically closed field of
characteristic zero. Let V be an irrep of G over k. Then dimV |#G.

We will recall a bit of arithmetic before jumping into the proof.
Some recollections on integrality. Let R be a commutive ring. An

element x ∈ R is integral if it satisfies a monic polynomial with integer
coefficients.

Prop. TFAE:

(1) x is integral
(2) The subring of R generated by x is finitely-generated as a Z-module.
(3) The subring of R generated by x is contained in a finitely-generated

Z-submodule of R.

Proof. (1) =⇒ (2) =⇒ (3) is obvious (though please explain why
:P). (3) =⇒ (2) follows from the fact that Z is Noetherian (or from the
classification of finitely-generated Abelian groups). (2) =⇒ (1) also follows
from Noetherianity—there exists some N such that {1, x, · · · , xN} generate
the given subring as an Abelian group, i.e. xN+1 is in their Z-span, and
hence satisfies a monic integer polynomial.

Cor. Integral elements of R form a subring.
Integrality of characters. Now again let G be a finite group and k an

algebraically closed field of chracteristic zero. Let

ρ : G → GLn(k)

be a representation.
Prop. (1) The values of the character of ρ, χρ(g), are algebraic integers.

(2) Let u =
$

g∈G u(g)g be an element of Z(k[G]), the center of the group
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algebra. Suppose the elements u(g) ∈ k are algebraic integers. Then u is
integral over Z.

Proof. (1) χρ(g) is a sum of roots of unity, hence a sum of algebraic
integers, hence an algebraic integer itself.

(2) As algebraic elements form a subring, it suffices to do this for the case
where u is the indicator function of a conjugacy class. But the sub-Z-module
of Z(k[G]) generated by these indicator functions is in fact a subring. Thus
each is contained in a finitely-generated Z-module, and is hence algebraic.

Cor. Let ρ be an irrep of G, and let u ∈ Z(k[G]) be as above, i.e. a linear
combination of group elements with coefficients algebraic integers. Then

1

dim ρ

&

g∈G
u(g)χρ(g) ∈ k

is an algebraic integer.
Proof. We will define a ring homomorphism Z(k[G]) → k sending u to

the element above; as u is integral, it maps to an integral element of k.
Namely, recall that Z(k[G]) acts on ρ by G-homomorphisms, i.e. that

action induces a natural ring map

Z(k[G]) → HomG(ρ, ρ) = k.

In fact we already computed this map in the course of proving characters
span class functions; it sends u to

|G|
dim ρ

〈u,χρ∨〉,

which is the same as the claimed sum. (Recall that we proved this as follows:
the action is by a scalar matrix, by Schur, so it suffices to compute its trace.
This gives &

u(g)χρ(g) = |G|〈u,χρ∨〉.
Dividing by the dimension gives the claim.)

We can now prove the:
Theorem. Let G be a finite group and k an algebraically closed field of

characteristic zero. Let V be an irrep of G over k. Then dimV |#G.
Proof. Let ρ be an irrep and set u =

$
g∈G χρ(g

−1)g. By the above, we
have

1

dim ρ

&

g∈G
u(g)χρ(g) =

|G|
dim ρ

〈χρ,χρ〉 =
|G|

dim ρ
dimHomG(ρ, ρ) =

|G|
dim ρ

.

Thus |G|
dim ρ is an algebraic integer; as it is also a rational number, it is in

fact an integer as desired.

Representation theory of the symmetric group.
We’ll first discuss some basic results, and then go into the proofs. I’m

(loosely) following some mix of Fulton-Harris and Etingof’s notes.
Partitions and Conjugacy Classes
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Key Facts:

• The number of irreducible representations of the symmetric group
Sn equals the number of its conjugacy classes.

• Conjugacy classes in Sn are in bijection with partitions of n.
• In fact, irreps of Sn are indexed by partitions of n, often repre-
sented by Young diagrams (Ferrers diagrams). This is an unusual
situation—while the number of conjugacy classes is always the same
as the number of representations, it’s unusual that there is some
natural bijection.

Young diagram associated to a partition. A partition of n is a sequence
λ = (λ1 ≥ λ2 ≥ · · · ≥ λm) such that λ1 + λ2 + · · · + λm = n. The
corresponding Young diagram has λi boxes in the ith row (from top to
bottom).
Conjugate partition. Given λ = (λ1,λ2, . . . ,λm), its conjugate partition
λ′ is obtained by reflecting the Young diagram along its main diagonal.
Equivalently, λ′

j is the number of boxes in the jth column of the diagram
for λ.

Projectors and Young Symmetrizers
We describe irreps of Sn in terms of certain idempotent elements (projec-
tions) in the group algebra C[Sn]. We will apply these to the (left) regular
representation to obtain each irreducible representation.

Number the boxes in a Young diagram from left to right and top to
bottom, e.g.

1 2 3 4
5 6 7
8
9.
A labeled Young diagram is a Young tableau.
Row and column stabilizers

• Let P ⊆ Sn be the subgroup of all permutations that preserve each
row of a fixed Young diagram (i.e., permutations acting within each
row).

• Let Q ⊆ Sn be the subgroup of all permutations that preserve each
column of the same Young diagram.

In the group algebra C[Sn], define

a =
&

p∈P
ep, b =

&

q∈Q
sgn(q) eq.

Here eg denotes the group algebra element corresponding to g ∈ Sn, and
sgn(q) is the sign of q.

Motivation: action on tensor powers
Let V be a vector space on which Sn acts by permuting tensor factors in

V ⊗n.
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• The element a symmetrizes along the rows and hence projects onto

Symλ1(V )⊗ · · ·⊗ Symλm(V )( )* +
row-based symmetrization

,

up to an isomorphism.
• The element b alternates along the columns and projects onto a
tensor product of exterior powers indexed by the conjugate partition
λ′, i.e.,

Λλ′
1(V )⊗ · · ·⊗ Λλ′

k(V ).

The Young symmetrizer. Set

c = a b.

This element is called the Young symmetrizer associated to the partition λ.
Example For a single column partition (1, 1, . . . , 1) (of length n), c gives

the sign representation. For a single row partition (n), c gives the trivial
representation (when applied to the regular representation).

Irreducibility and Idempotency

Theorem 1. A suitable nonzero scalar multiple of c = ab is an idempotent
in C[Sn]. Its image, when acting on the regular representation, is irreducible
and is denoted by Vλ. Distinct partitions give non-isomorphic irreps, and
every irrep arises for a unique partition.

Corollary Every irreducible representation of Sn can be defined over Q.
Examples.

• λ = (n) yields the trivial representation, with c a scalar multiple of
the Reynolds operator (averaging over all of Sn).

• λ = (1, 1, . . . , 1) yields the sign representation.
• λ = (2, 1) for S3 corresponds to the standard representation of S3.
• For S4, partitions (4), (1, 1, 1, 1), (3, 1), (2, 1, 1), (2, 2) give all irreps:
trivial, sign, standard, standard ⊗ sign, and the remaining two-
dimensional one pulled back from S3.

Remark In general, partitions of the form (d, 1, . . . , 1) correspond to the
various exterior powers of the standard representation.
Character theory. Frobenius gave explicit character formulas for Vλ; see
Fulon Harris, IV for details. We will not prove those formulas here.

Dimension (Hook-Length) Formula
Proposition (Dimension Formula) Label each box b in a Young diagram

by (boxes to the right of b) + (boxes below b) + 1.
So for example
6 4 3 1
4 2 1
1.
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These are called the hook lenghts, and the dimension of the irrep Vλ is
given by

dimVλ =
n!,

b∈Young diagram of λ hook length(b)
.

Example For the standard representation of Sn, partition λ = (n−1, 1),
one finds

dimV(n−1,1) = n!/n(n− 2)(n− 3) · · · 2 · 1 = n− 1.

as the hook lengths are
n 1
n− 2
n− 3
...
Proofs of Key Lemmas, following Etingof

Lemma 2. We have

c = ab =
&

g∈PQ

sgn(gQ) eg,

where g = pq with p ∈ P and q ∈ Q, and sgn(gQ) = sgn(q).

Proof. Direct computation. The point is that each element of Sn can
appear at most once in this product, because P ∩Q = {e}.

Lemma 3. Let x ∈ C[Sn] and λ a partition. Then

aλ x bλ = ℓλ(x) cλ,

where ℓλ is a linear function.

Proof. If g ∈ PλQλ, then g has a unique representation g = pq with p ∈ Pλ

and q ∈ Qλ. In this case,

aλ g bλ = (−1)q cλ.

Therefore, to prove the required statement, we need to show that if g is not
in PλQλ, then aλ g bλ = 0.

To see why, it suffices to find a transposition t such that t ∈ Pλ and
g−1tg ∈ Qλ. Then

aλ g bλ = aλ t g bλ = aλ g (g
−1 t g) bλ = − aλ g bλ,

which forces aλ g bλ = 0.
Equivalently, we must find two elements i, j that lie in the same row of

the tableau T = Tλ and in the same column of the tableau T ′ = gT (where
gT is obtained by permuting the entries of T via g). If no such pair (i, j)
exists, then we claim that g ∈ PλQλ; more precisely, there exist p ∈ Pλ and
q′ ∈ Q′

λ := g Qλ g
−1 so that pT = q′ T ′. From this, one concludes g = p q′−1

and q = g−1 q′ g ∈ Qλ.
Indeed, any two elements in the first row of T must go to different columns

of T ′. Hence there exists q′1 ∈ Q′
λ that repositions all these first-row elements
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into the first row of T ′. Then we can find p1 ∈ Pλ so that p1T and q′1T
′ share

the same first row. Repeating this procedure for the second row (finding
p2, q

′
2 so that p2p1T and q′2q

′
1T

′ match on the first two rows) and continuing
row by row, we eventually construct the desired elements p, q′. The lemma
is proved. □

Lexicographic Ordering on Partitions. We say λ > µ if, in the first
place where they differ, we have λi − µi > 0.

Lemma 4. If λ > µ, then

aλC[Sn] bµ = 0.

Proof. Similarly to the previous lemma, it suffices to show that for any
g ∈ Sn, there is a transposition t ∈ Pλ such that g−1 t g ∈ Qµ. Let T = Tλ

and T ′ = g Tµ. We claim that there exist two integers that lie in the same
row of T but in the same column of T ′. Indeed, if λ1 > µ1, the pigeonhole
principle shows this already in the first row.

Otherwise, if λ1 = µ1, then by an argument analogous to the proof of the
preceding lemma, we can find p1 ∈ Pλ and q′1 ∈ g Qµ g

−1 so that p1 T and
q′1 T

′ agree in the first row. We then repeat this process for the second row,
and so on. After i − 1 such steps, we will have λi > µi, which forces two
entries of row i of the first tableau to occupy the same column in the second
tableau. This completes the proof. □

Lemma 5. The element cλ is proportional to an idempotent. Namely,

c2λ =
n!

dimVλ
cλ.

Proof. By Lemma 3, c2λ is already known to be proportional to cλ. The
claimed constant is computed by computing the trace of both sides; leave
this to the students. □

Lemma 6. Let A be an algebra and e be an idempotent in A. Then for any
left A-module M , one has

HomA(Ae,M) ∼= eM,

where an element x ∈ eM corresponds to the map fx : Ae → M given by
fx(a) = a x for a ∈ Ae.

Proof. Note that 1 − e is also an idempotent in A. Hence the statement
follows immediately from the isomorphism

HomA(A,M) ∼= M

and the decomposition

A = Ae ⊕ A (1− e).

□
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Proof of Theorem 1. Let λ ≥ µ. Then by the two lemmas above,

HomSn(Vλ, Vµ) = HomSn

"
C[Sn] cλ, C[Sn] cµ

#
= cλC[Sn] cµ.

By Lemma 4, this space vanishes for λ > µ, and by Lemmas 3 and 5 it is
one-dimensional for λ = µ. Hence each Vλ is irreducible, and Vλ ∕∼= Vµ if
λ ∕= µ. Since the number of partitions of n equals the number of conjugacy
classes in Sn, the representations Vλ exhaust all irreducible representations
of Sn. The theorem is proved.


